Stochastic Battery Discharge in Portable Communication Devices

XV. The Fifteenth Annual Battery Conference on Applications and Advances

C.F. Chiasserini, R.R. Rao

Abstract

The objective of this work is to explore ways in which performance of battery systems can be enhanced through the use of energy-efficient battery management techniques. The phenomenon of charge recovery that takes place under pulsed discharge conditions is identified as a mechanism that can be exploited to enhance the capacity of a cell in a portable communication device. The bursty nature of many data traffic sources suggests that data transmissions in communication devices may provide natural opportunities for charge recovery. We model the data source as a stochastic process and let the cell discharge be driven by such a process. We use a model of a dual lithium ion insertion cell to identify the improvement in cell capacity that results from the stochastic discharge. The insight from this study leads us to propose discharge shaping techniques that tradeoff energy efficiency with delay in power supply.

Introduction

As the popularity of radio communication equipments increases, reliability and energy capacity of batteries have become critical issues. Indeed, a greater battery capacity means a longer run-time of the portable device, and therefore it is a determining factor in the success of a product. Due to the disparity in the rate of technological advance in batteries and in the portable communication equipments market, software/hardware solutions have to be explored to improve the battery performance.

A simplified view of a portable radio device is shown in Figure 1, where the radio part consists of a baseband/digital section, a RF (Radio Frequency) section and a power amplifier, each of which requires a different power supply [1]. Typically the baseband and RF sections consume a constant level of power but the power amplifier draws a much greater amount of power during the traffic transmission over the radio channel. The power supply unit is a rechargeable battery, typically a Ni-Cd, Ni-MH, or lithium-based battery system. It is quite obvious that features such as a long lifetime, light weight and a small size are highly desirable. For these reasons, battery management is a crucial aspect to portable telecommunications systems.

As shown by experimental tests [2, 3, 4, 5, 6, 7, 8], a greater battery capacity can be obtained by using a pulsed current discharge instead of a constant current discharge. In fact, under a pulsed discharge profile the charge recovery mechanism inherent to secondary storage batteries can be exploited and longer relaxation times translate into a greater capacity delivered by the battery [2].

Several findings [2, 4, 5] quantify the advantages that result from a pulsed current discharge. In [5] LaFollette reports the results of subjecting a bipolar lead-acid cell to current pulses that last for 3 ms followed by a rest period of 22 ms. The drained current was initially equal to 12 A/cm² and dropped to 7 A/cm² at the end of the sixth impulse. During the first four rest periods, the cell was able to totally recover the initial value of potential.

In batteries characterized by a relatively low conductivity, e.g., lithium-polymer cells [9, 10], pulsed discharge can increase the delivered specific power. Lithium-polymer cells have lightweight and flat formats and fit well in extra-thin cellular phones, but ion diffusion through the conducting polymers is slow and this limits the rate at which current can be withdrawn from a cell. However, in [11] a lithium-polymer cell was discharged at up to 80 mA/cm², about fourteen times the typical
constant discharge rate, using pulses of 10 ms duration followed by a 50 ms rest period.

These benefits continue to hold if the discharge is composed of pulses superimposed on a constant current [12]. Such discharge patterns are likely in communication devices where the baseband and RF parts need a low constant supply (40 - 200 mA), but current load changes (up to 2 A) occur whenever the system passes from the idle to the active state or from receive to transmit mode.

In some communication systems, a periodic pulsed discharge is already used in the presence of voice traffic sources. For instance, in the cellular system GSM (Global System for Mobile) every 4.6 ms an impulse of current lasting 576 μs is required to transmit voice traffic over the radio channel, thus a pulsed discharge with duty cycle 1:8 can be implemented [13].

Our objective here is to exploit the recovery effect in conjunction with data traffic sources (such as Internet traffic, file transfer, etc.). Data traffic sources are delay-tolerant and allow for a much greater flexibility, so that longer relaxation times can be introduced in the discharge process. A data traffic source is modeled as a stochastic process that generates information units, called packets, according to a certain probability distribution.

In this paper, we study the actual gain derived under pulsed discharge of a dual lithium ion insertion cell induced by a stochastic generation process of the data packets. Then, we "tailor" the discharge process through a traffic shaping technique. The discharge shaping is performed by delaying a power consuming activity such as the transmission of a packet; in this way, a low rate
the ability to recover decreases. This charge is... discharged a current impulse is drawn from the cell, otherwise the cell recovers charge.

We discretize the time dimension in time intervals 1 ms long, a reasonable value for the duration of a packet transmission. The data traffic source is modeled as a Bernoulli driven process, i.e., at each time interval a packet is generated with probability p. Thus, if we consider to transmit a packet as soon as it is generated, with probability p an impulse 1 ms long is drawn off the cell, while with probability $1 - p$ the cell recovers for 1 ms. During the idle periods the cell potential arises, although the ability to recover decreases as the cell discharges [5]. Eventually, when the cell potential drops below the cutoff value the discharge cycle ends.

Performance obtained through the stochastic discharge is studied by considering a dual insertion lithium-ion cell. This was a natural choice since lithium-based batteries are vastly used in portable devices and because of the availability of a program developed by Newman et al. [14] that models this cell.

The program, written in Fortran code, numerically solves a detailed model of the cell behavior. The model is governed by partial differential equations [15, 16], and also takes into account double-layer capacitance in each electrode. The program was modified to let the discharge of the cell be driven by a stochastic process representing the data packets generation.

Results are obtained for the first discharge cycle of the cell; thus, discharge always starts from a value of positive open-circuit potential equal to 4.3071 V. We assume that the cut-off potential is equal to 2.8 V and we take the current density that is drained from the cell at each impulse as a varying parameter of the system. In practice, the cut-off potential and the current density depend on the particular application we refer to (cellular phone, cordless phone, etc.) and on the technology that is used to build the electronics of the device. The parameters values that we consider are reasonable for the use in portable communication devices and at the same time avoid us to run the program for an excessively long time.

Figure 2 presents the behavior of the specific energy derived from the cell as a function of the rate at which the current impulses are drained (earlier in this section denoted by p). Two values of current density are considered: $I=100$ and $I=110$ A/m2. As it can be seen, the difference in the amount of energy delivered in the two cases ranges between one and two orders of magnitude. However, as the pulse discharge rate decreases, the delivered energy dramatically increases for both the values of I. This is due to the fact that as the discharge rate becomes smaller, the chance to recover for the cell.
Figure 4: Time delay in power supply when a simple discharge shaping technique is applied for $I=100$ A/m2 and $I=110$ A/m2. Both traffic generation and pulsed discharge are Bernoulli driven (p_g denotes the traffic generation rate).

Figure 3 illustrates the behavior of the specific power per impulse versus the discharge rate for the same values of current density. As expected, the specific power obtained for $I=110$ A/m2 is significantly higher than for $I=100$ A/m2. More interestingly, the plot shows that the level of specific power remains roughly constant no matter what discharge rate is used. This is an important result since electronic circuits used in portable devices require a steady level of power.

These results suggest that an accrue in battery capacity is always possible if a power consuming activity, such as the transmission of a packet, is delayed and a sufficiently low discharge rate is used. This is the subject of the next section.

Shaping the Discharge Demand

In communication networks, data packets may be delivered to the receiving user with a fairly large delay without affecting the required traffic quality of service. The idea therefore is to shape the discharge demand at the communication device by delaying the packets transmission. Packets, whose transmission is delayed, are stored in a buffer from the time instant of their generation until they are transmitted.

As before, we consider that the data traffic source is represented by a stochastic process Bernoulli driven and with a certain probability p_g a packet is generated in a time interval 1 ms long. Then, we assume that the discharge process is Bernoulli distributed with probability p_d independent of p_g. We take $p_d < p_g$, i.e., the packets transmission rate is lower than the packets generation rate.

Figure 4 shows the average time delay that the data packets experience at the communication device as a function of the discharge rate p_d, as the generation rate and the drained current density vary. As expected, for a given value of current density the delay becomes larger as the discrepancy between p_g and p_d increases. Consider $p_d = 0.8$ and compare the two cases of current density $I=100$ A/m2 and $I=110$ A/m2: for a pulse discharge rate $p_d = 0.5$, we obtain a delay equal to 3.7 s and 0.1 s, respectively. Looking at Figure 2 we find that the specific energy delivered at a discharge rate equal to 0.5 for $I=100$ A/m2 is equal to 0.84 Wh/kg, whereas for $I=110$ A/m2 is equal to 0.021 Wh/kg. However, the gain in specific energy that we achieve by delaying the packets
transmission is roughly equal to a factor 2 in both the cases.

Figure 5 presents a three-dimensional plot where the average time delay is derived as a function of the packet generation rate and the delivered specific energy when a more complex discharge shaping technique is applied. The current density is taken equal to 110 A/m².

In this case, both the packets generation and the discharge of the cell are still Bernoulli driven but whenever the cell potential drops below the value of threshold \(V_T = 3.0 \) V, the discharge process is interrupted and the cell is let recover so that its potential arises again above \(V_T \). Similarly to what we observed before, for a given value of packet generation rate, the delay grows as the specific energy increases. The values of delivered specific energy are significantly greater than those obtained with the previous technique: for \(p_g = 0.8 \), values of specific energy between 0.0284 and 0.1412 Wh/kg can now be achieved. The price to pay in terms of delay ranges between 0.16 s and 3.7 s.

It is clear that the fundamental tradeoff here is between energy efficiency and traffic delay, where the maximum acceptable delay depends on the required quality of service of the considered traffic class.

Conclusions

Due to the extraordinary market evolution of portable communication devices and the development of Internet data services, a compelling need for high-capacity battery systems exists.

In this paper the recovery effect intrinsic to an electrochemical cell was exploited to increase battery performance in tetherless communication devices. A stochastic pulsed discharge was applied in conjunction with bursty traffic and the gain obtained in energy efficiency was shown.

By using discharge shaping techniques, a further improvement is achieved at the cost of an additional delay in providing the required power supply. According to the quality of service constraints that characterize the considered data traffic, a tradeoff between energy efficiency and delay can be found.

Although results were derived only for a dual lithium ion insertion cell, we believe that the benefits of stochastic pulsed discharge can be enjoyed by any of the battery technologies used in portable communication devices.

Additional results for different values of current density, as well as, further investigation of discharge shaping techniques are needed and will be object of future research.

REFERENCES

